

Improving Multiprocessor Performance with Coarse-Grain Coherence Tracking

Jason F. Cantin, Mikko H. Lipasti, and James E. Smith
Department of Electrical and Computer Engineering

University of Wisconsin, Madison
{jcantin, mikko, jes}@ece.wisc.edu

Abstract
To maintain coherence in conventional shared-memory
multiprocessor systems, processors first check other proc-
essors� caches before obtaining data from memory. This
coherence checking adds latency to memory requests and
leads to large amounts of interconnect traffic in broadcast-
based systems. Our results for a set of commercial, scien-
tific and multiprogrammed workloads show that on
average 67% (and up to 94%) of broadcasts are unneces-
sary.

Coarse-Grain Coherence Tracking is a new technique
that supplements a conventional coherence mechanism
and optimizes the performance of coherence enforcement.
The Coarse-Grain Coherence mechanism monitors the
coherence status of large regions of memory, and uses that
information to avoid unnecessary broadcasts. Coarse-
Grain Coherence Tracking is shown to eliminate 55-97%
of the unnecessary broadcasts, and improve performance
by 8.8% on average (and up to 21.7%).

1. Introduction

Cache-coherent multiprocessor systems have wide-ranging
applications from commercial transaction processing and
database services to large-scale scientific computing. They
have become a critical component of internet-based ser-
vices in general. As system architectures have incorporated
larger numbers of faster processors, the memory system
has become critical to overall system performance and
scalability. Improving both coherence and data bandwidth,
and using them more efficiently, have become key design
issues.

To maintain coherence and exploit fast cache-to-cache
transfers, multiprocessors commonly broadcast memory
requests to all the other processors in the system [1, 2, 3].
While broadcasting is a quick and simple way to find
cached data copies, locate the appropriate memory control-
lers, and order memory requests, it consumes considerable
interconnect bandwidth and, as a byproduct, increases
latency for non-shared data. To reduce the bottleneck

caused by broadcasts, high performance multiprocessor
systems decouple the coherence mechanism from the data
transfer mechanism, allowing data to be moved directly
from a memory controller to a processor either over a
separate data network [1, 2, 3], or separate virtual chan-
nels [4]. This approach to dividing data transfer from
coherence enforcement has significant performance poten-
tial because the broadcast bottleneck can be sidestepped.
Many memory requests simply do not need to be broadcast
to the entire system, either because the data is not currently
shared, the request is an instruction fetch, the request
writes modified data back to memory, or the request is for
non-cacheable I/O data.

1.1. Coarse-Grain Coherence Tracking

In this paper, we leverage the decoupling of the coherence
and data transfer mechanisms by developing Coarse-Grain
Coherence Tracking, a new technique that allows a proc-
essor to increase substantially the number of requests that
can be sent directly to memory without a broadcast and
without violating coherence. Coarse-Grain Coherence
Tracking can be implemented in an otherwise conventional
multiprocessor system. A conventional cache coherence
protocol (e.g., write-invalidate MOESI [5]) is employed to
maintain coherence over the processors� caches. However,
unlike a conventional system each processor maintains a
second structure for monitoring coherence at a granularity
larger than a single cache line (Figure 1). This structure is
called the region coherence array (RCA), and maintains
coarse-grain coherence state over large, aligned memory
regions, where a region encompasses a power-of-two
number of conventional cache lines.
 On snoop requests, each processor�s RCA is snooped
along with the cache line state, and the coarse-grain state is
piggybacked onto the conventional snoop response. The
requesting processor stores this information in it�s RCA to
avoid broadcasting subsequent requests for lines in the
region. As long as no other processors are caching data in
that region, requests for data in the region can go directly
to memory and do not require a broadcast.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

DRAM
Core

L2 Cache Data

Memory
Controller

Network
Interface

Data
Switch

Request / Response Network

Data Network

L2 Tag
(Line
State)

Region
Coherence

Array

Data

Data Data

Requests
Requests

Processor Chip

Figure 1. Processor node modified to implement
Coarse-Grain Coherence. A Region Coherence
Array is added, and the network interface may
need modification to send requests directly to the
memory controller.

As an example, consider a shared-memory multiprocessor
with two-levels of cache in each processor. One of the
processors, processor A, performs a load operation. The
load misses in the L1 cache, and a read request is sent to
the L2 cache. The L2 cache coherence state and the region
coherence state are read in parallel to determine the status
of the line. There is a miss in the L2 cache, and the region
state is invalid, so the request is broadcast. Each other
processor�s cache is snooped, and the external status of the
region is sent back to processor A with the conventional
snoop response. Because no processors were caching data
from the region, an entry for the region is allocated in
processor A�s RCA with an exclusive state for the region.
Until another processor makes a request for a cache line in
that region, processor A can access any memory location
in the region without a broadcast.

1.2. Performance Potential

Figure 2 illustrates the potential of Coarse-Grain Coher-
ence Tracking. The graph shows the percentage of
unnecessary broadcast requests for a set of workloads on a
simulated four-processor PowerPC system. Refer to Sec-
tion 4 for the system parameters and a description of the
workloads used. On average, 67% of the requests could
have been handled without a broadcast if the processor had
oracle knowledge of the coherence state of other caches in
the system. The largest contribution is from ordinary reads
and writes (including prefetches) for data that is not shared
at the time of the request. The next most significant con-
tributor is write-backs, which generally do not need to be
seen by other processors. These are followed by instruc-
tion fetches, for which the data is usually clean-shared.
The smallest contributor, although still significant, is Data

Cache Block (DCB) operations that invalidate, flush, or
zero-out cached copies in the system. Most of these are
Data Cache Block Zero (DCBZ) operations used by the
AIX operating system to initialize physical pages.

0%

20%

40%

60%

80%

100%

Oce
an

Ray
tra

ce

Barn
es

SPECint
20

00
rat

e

SPECjbb
20

00

SPECweb
99

TPC-H
TPC-B

TPC-W

Arith
meti

c M
ea

n

R
eq

ue
st

s

DCB I-Fetch Read Write Write-back

94%

60%

32%

93%
89%

76%

15%

54%

90%

67%

Figure 2. Unnecessary broadcasts in a four-
processor system. From 15% to 94% of requests
could have been handled without a broadcast.

If a significant number of the unnecessary broadcasts can
be eliminated in practice, there will be large reductions in
traffic over the broadcast interconnect mechanism. This
will reduce overall bandwidth requirements, queuing de-
lays, and cache tag lookups. Memory latency can be
reduced because many data requests will be sent directly to
memory, without first going to an arbitration point and
broadcasting to all coherence agents. Some requests that
do not require a data transfer, such as requests to upgrade a
shared copy to a modifiable state and DCB operations, can
be completed immediately without an external request.

As we will show, Coarse-Grain Coherence Tracking
does, in fact, eliminate many of the unnecessary broadcasts
and provides the benefits just described. In effect, it en-
ables a broadcast-based system to achieve much of the
benefit of a directory-based system (low latency access to
non-shared data, lower interconnect traffic, and improved
scalability) without the disadvantage of three-hop cache-
to-cache transfers. It exploits spatial locality, but maintains
a conventional line size to avoid increasing false-sharing,
fragmentation, and transfer costs.

1.3. Paper Overview

This paper presents a protocol to implement Coarse-Grain
Coherence Tracking and provides simulation results for a
broadcast-based multiprocessor system running commer-
cial, scientific, and multiprogrammed workloads. The
paper is organized as follows. Related work is surveyed in

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

the next section. Section 3 discusses the implementation of
Coarse-Grain Coherence Tracking, along with a proposed
coherence protocol. Section 4 describes evaluation meth-
odology, which is followed by simulation results in
Section 5. Section 6 concludes the paper and presents
opportunities for future work.

2. Related Work

Sectored caches provide management of cache data at
granularities larger than a single line. Sectored caches
reduce tag overhead by allowing a number of contiguous
lines to share the same tag [6, 7] (see also the references
in [8]). However, the partitioning of a cache into sectors
can increase the miss rate significantly for some applica-
tions because of increased internal fragmentation [7, 8, 9].
There have been proposals to fix this problem, including
Decoupled Sectored Caches [9] and the Pool of Subsectors
Cache Design [8], both of which achieve lower miss rates
for the same cache size by allowing sectors to share space
for cache lines. Coarse-Grain Coherence Tracking is not
focused on reducing tag overhead and does not signifi-
cantly restrictions on the placement of data in the cache. It
therefore does not significantly affect cache miss rate.
Coarse-Grain Coherence Tracking optimizes request rout-
ing by maintaining information for larger regions of data,
beyond what is in the cache.

Subline caches have been proposed to exploit more spa-
tial locality while avoiding false-sharing in
caches [10, 11]. A large transfer line exploits spatial local-
ity, while coherence state is maintained on smaller
sublines to avoid the increased false-sharing that results
from a larger line size. However, transferring larger lines
consumes bandwidth, and, like sectoring, the larger lines
increase internal fragmentation. Note that the terms �sec-
tored cache� and �subline cache� are often used
interchangeably in the literature. Coarse-Grain Coherence
Tracking does not necessarily transfer large numbers of
cache lines at once.

Dubnicki and LeBlanc proposed an adjustable cache
line size [12]. This allows the system to dynamically in-
crease/decrease the line size to tradeoff spatial locality and
false-sharing based on application needs. However, at any
given time all lines are the same size, and the best size is
limited by false-sharing and cache fragmentation. Coarse-
Grain Coherence Tracking does not increase fragmentation
or false-sharing.

Some architectures, such as PowerPC [13] provide bits
that the operating system may use to mark virtual memory
pages as coherence not required (i.e., the �WIMG� bits).
Taking advantage of these bits, the hardware does not need
to broadcast requests for data in these pages. However, in
practice it is difficult to use these bits because they require
operating system support, complicate process migration,

and are limited to virtual-page-sized regions of mem-
ory [14].

Moshovos et al. proposed Jetty, a snoop-filtering
mechanism for reducing cache tag lookups [15]. This
technique is aimed at saving power by predicting whether
an external snoop request is likely to hit in the local cache,
avoiding unnecessary power-consuming cache tag look-
ups. Like our work, Jetty can reduce the overhead of
maintaining coherence; however Jetty does not avoid send-
ing requests and does not reduce request latency.

Moshovos has concurrently proposed a technique called
RegionScout that is based on Jetty, and avoids sending
snoop requests as well as avoiding tag lookups for incom-
ing snoops [16]. RegionScout uses less precise
information, and hence can be implemented with less
storage overhead and complexity than our technique, but at
the cost of effectiveness.

Saldanha and Lipasti proposed a speculative snoop-
power reduction technique for systems with a broadcast
tree for a request network [17]. The different levels of the
broadcast tree are snooped serially, first checking the near-
est neighbors, and then progressively checking nodes that
are farther away when necessary. Latency and power are
reduced for data in the nearest neighbors, however latency
is increased for data on the farther nodes. Coarse-Grain
Coherence Tracking, on the other hand, does not increase
latency for requests to remote nodes.

Ekman, Dahlgren, and Stenström proposed a snoop-
energy reduction technique for chip-multiprocessors with
virtual caches based on TLBs [18]. This technique main-
tains a sharing list with each entry in the TLB, and
broadcasts the list with each snoop request so only proces-
sors known to be sharing the virtual region need to check
their cache tags and respond. This work is similar to ours
because it maintains information in the processor that
optimizes the handling of external requests, however re-
quests are still broadcast.

There is also recent work in extending SMPs. Isotach
networks extend SMPs by not requiring an ordered address
interconnect [19]. These networks allow processors to
control the timing of message delivery and pipeline mes-
sages without violating sequential consistency. Martin et
al. proposed Timestamp snooping [20], an improved tech-
nique that introduces the concept of �slack� to cope with
network delays, and requires fewer messages to imple-
ment. Martin et al. later proposed Token Coherence [21],
which uses tokens to grant coherence permissions, elimi-
nating the need for ordered networks or logical time, and
creating a simple correctness substrate onto which specula-
tive optimizations, such as destination-set prediction can
be implemented [22]. Interestingly, the destination-set
prediction work keeps information for predictions at a
larger granularity than a cache line, called a macrob-
lock [22]. This line of research concedes the difficulty of
building multiprocessor systems with ordered broadcast

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

networks and tries to support the increasing rate of broad-
cast requests, whereas Coarse-Grain Coherence reduces
unnecessary broadcasts and sends requests directly to
memory with low latency.

3. Coarse-Grain Coherence Tracking Imple-
mentation

Coarse-Grain Coherence Tracking is implemented with a
region protocol that monitors coherence events and tracks
coherence state at a coarse granularity. The coarse-grain
coherence state is stored in the RCA, and checked by the
local processor and external snoop requests. In responses
to requests, the region status is sent back via additional
snoop response bits.

3.1. Region Protocol

The region protocol observes the same request stream as
the underlying conventional protocol, updating the region
state in response to requests from the local processor and
other processors in the system. The local processor checks
the region state before broadcasting requests to the rest of
the system, and sends a request directly to memory if the
region state indicates that a broadcast is unnecessary. The
proposed protocol consists of seven stable states, which
summarize the local and global coherence state of lines in
the region. The states and their definitions are in Table 1.

Table 1. Region Protocol States.

Processor Other Processors Broadcast Needed?

Invalid (I) No Cached Copies Unknown Yes

Clean-Invalid (CI) Unmodified Copies Only No Cached Copies No

Clean-Clean (CC) Unmodified Copies Only Unmodified Copies Only For Modifiable Copy

Clean-Dirty (CD) Unmodified Copies Only May Have Modified Copies Yes

Dirty-Invalid (DI) May Have Modified Copies No Cached Copies No

Dirty-Clean (DC) May Have Modified Copies Unmodified Copies Only For Modifiable Copy

Dirty-Dirty (DD) May Have Modified Copies May Have Modified Copies Yes

Invalid indicates that no lines are cached by the processor,
and the state of lines in other processors� caches is un-
known. The first letter of the name of a valid state
indicates whether there are clean or modified copies of
lines in the region cached by the local processor. The sec-
ond letter indicates whether other processors are sharing or
modifying lines in the region.

The states CI and DI are the exclusive states, because
no other processors are caching lines from the region, and
requests by the processor do not need a broadcast. The CC
and DC states are externally clean, only reads of shared
copies (such as instruction fetches) can be performed with-
out a broadcast. Finally, CD and DD are the externally
dirty states, broadcasts must be performed on requests to
ensure that cached copies of data are found.

The state transition diagrams depicted in Figures 3-5 illus-
trate the region protocol. For clarity, the exclusive states
are solid gray, and the externally clean states are shaded.

I

DI

DCCC

CI

CD DD

Read-E / RFO,
Region Not Cached

I-Fetch,
Region Not Cached

I-Fetch / Read-S,
Region Clean

I-Fetch / Read-S,
Region Dirty

Read-E / RFO,
Region Clean

Read-E / RFO,
Region Dirty

I

DI

DCCC

CI

CD DD
Read-E / RFO
Region Dirty

Read-E / RFO,
Region Clean

Read / RFO

Figure 3. State transition diagrams for requests
made by the processor for a given external re-
gion state.

From the Invalid state, the next state depends both on the
request and the snoop responses (left side of Figure 3).
Instruction fetches and Reads of shared lines will change
the region state from Invalid to CI, CC, or CD, depending
on the region snoop response. Read-For-Ownership (RFO)

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

operations and Reads that bring data into the cache in an
exclusive state transition the region to DI, DC, or DD. If
the region is already present in a clean state, than loading a
modifiable copy updates the region state to the correspond-
ing dirty state. A special case is for CI, which silently
changes to DI when a modifiable copy of a line is loaded
(dashed line).

I

DI

DCCC

CI

CD DD

I

DI

DCCC

CI

CD DD

I-Fetch,
Region Not
Cached I-Fetch,

Region Not
Cached

I-Fetch / Read-S
Region Clean

Read-E / RFO,
Region Not
Cached

Read-E /
RFO,
Region Not
Cached

Read-E / RFO
Region Clean

Read-E/ RFO,
Region Clean

Read-E / RFO,
Region Not Cached

Read-E/ RFO,
Region Not Cached

Figure 4. State transition diagrams for processor
requests that upgrade the region state.

The transitions in Figure 4 are upgrades based on the
snoop response to a broadcast. They not only update the

status of the region to reflect the state of lines in the cache,
but also use the region snoop response (if possible) to
upgrade the region state to an externally clean, or an ex-
clusive state. For example, a snoop is required when in the
CC state for RFO operations. If the snoop response indi-
cates that no processors are sharing the region anymore,
the state can be upgraded to DI.

The top part of Figure 5 shows how external requests to
lines in the region downgrade the region state to reflect
that other processors are now reading or modifying lines in
the region, indicating that a snoop may be required for
subsequent accesses.

An important case occurs for external read requests re-
sulting from loads. If the line snoop response is available
to the region protocol, or if the local processor is caching
the requested line, then it is known whether the read is
going to get an exclusive copy of the line. The region
protocol can transition to an externally clean region state
(CC, DC) instead of externally dirty (CD, DD).

The bottom part of Figure 5 shows the state transitions
for evictions. Also shown is that the protocol implements a
form of self-invalidation (for the region state, not the cache
line state as in prior proposals for dynamic self-
invalidation [23]). When broadcasts cannot be avoided, it
is often because the region is in an externally dirty state.
Frequently this is overly conservative because there are no
lines cached by the remote processors (possibly due to
migratory data). Invalidating regions that have no lines
cached improves performance significantly for the proto-
col. To accomplish this, a line count is added to each
region to keep track of the number of its lines that are
cached by the processor; the count is incremented on allo-
cations and decremented on invalidations. If an external
request hits in a region and the line count is zero, the re-
gion is invalidated so that later requests may obtain an
exclusive copy of the region.

In the protocol loads are not prevented from obtaining
exclusive copies of lines. In the state diagrams above,
memory read-requests originating from loads are broadcast
unless the region state is CI or DI. An alternative ap-
proach can avoid broadcasts by accessing the data directly
and putting the line into a shared state, however this can
cause a large number of upgrades. Future work will inves-
tigate adaptive optimizations to address this issue.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

I

DI

DCCC

CI

CD DD

Self-Invalidation /
Eviction

Self-Invalidation /
Eviction

Self-Invalidation /
Eviction

Self-Invalidation /
Invalidation

Self-Invalidation /
Eviction Self-Invalidation /

Eviction

I

DI

DCCC

CI

CD DD

External
I-Fetch /
External
Read-S

External Read-E /
External RFO

External Read-E /
External RFO

External Read-E /
External RFO

External
I-Fetch /
External
Read-S

External Read-E /
External RFO

Figure 5. State transition diagrams for external
requests.

3.2. Region Coherence Array

The RCA implements an array in each processor for main-
taining the region state. An RCA is needed at the lowest
levels of coherence above which inclusion is maintained.
If the lower levels of the cache hierarchy are not inclusive,
there should be region state for the higher levels. In sys-
tems with multiple processing cores per chip, only one
RCA is needed for the chip [2, 3, 24], unless there is
snooping between the cores and it is desirable to conserve

on-chip bandwidth. The RCA may be implemented with
multiple banks as needed to match the bandwidth require-
ments of the cache.

For processors to respond correctly to external requests,
inclusion must be maintained between the region state and
the cache line state. That is, if a line is cached, there must
be a corresponding RCA entry so that a region snoop re-
sponse does not falsely indicate that no lines in the region
are cached. Similarly, every memory request for which
the requesting processor�s region state is invalid must be
broadcast to the system to acquire permissions to the re-
gion and to inform other processors that may also be
accessing lines in the region. Because inclusion is main-
tained, lines must sometimes be evicted from the cache
before a region can be evicted from the RCA. However,
the cost can be mitigated. The replacement policy for the
RCA can favor regions that contain no cached lines. These
regions are easily found via the line count mechanism.
Favoring empty regions and using an RCA with 512B
regions and the same associativity as the cache, yields an
average of 65.1% empty evicted regions, followed by
17.2% and 5.1% having only one or two cached lines,
respectively. The increase in cache miss ratio resulting
from these evictions is approximately 1.2%.

For a system like the recent Ultrasparc-IV [1, 24], with
up to 16GB of DRAM with each processor chip and up to
72 total processors, the physical address length is at least
40 bits. Assuming that each processor has a 1MB 2-way
set-associative on-chip cache with 64-byte lines, each line
needs 21 bits for the physical address tag, three bits for
coherence state, and eight bytes to implement ECC. For
each set there is a bit for LRU replacement and eight bits
of ECC for the tags and state information (for a total of 23
bytes per set). The cache area overhead based on this de-
sign point is shown in Table 2 below.

For the same number of RCA entries as cache entries
and 512-byte regions, the overhead is 5.9%. If the number
of entries is halved, the overhead is nearly halved, to 3%.
The relative overhead is less for systems with larger, 128-
byte cache lines like the current IBM Power systems [2, 3].

3.3. Direct Access to Memory Controllers

Though systems such as those from Sun [1] and IBM [3]
have the memory controllers integrated onto the processor
chip, these controllers are accessed only via network re-
quests. However, a direct connection from the processor to
the on-chip memory controller should be straightforward
to implement. To avoid broadcasts for other processors�
memory, it will be necessary to add virtual channels to the
data network so that request packets can be sent to the
memory controllers on other chips in the system. Many
memory requests are for memory on the same multi-chip
module or board, and these can potentially be accessed

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

with lower latency than a global broadcast. Also, it is eas-
ier to add bandwidth to an unordered data network than a
global broadcast network.

For systems like the AMD Opteron servers [4], no in-
terconnect modifications are needed. The requests and data
transfers use the same physical network, and requests are
sent to the memory controller for ordering before being
broadcast to other processors in the system. To implement
Coarse-Grain Coherence Tracking in this system, a request
can be sent to the memory controller as before, but the
global broadcast can be skipped. The memory data would
be sent back to the requestor, as it would if no other proc-
essors responded with the data.

3.4. Additional Bits in the Snoop Response

For the protocol described above, two additional bits are
needed in the snoop response (or two encodings). One bit
indicates whether the region is in a clean state in other
processors� caches (Region Clean), and a second bit indi-
cates whether the region is in other processors� caches a
dirty state (Region Dirty). These bits summarize the region
as a whole, and not individual lines. They are a logical
sum of the region status in other processors� caches, ex-
cluding the requestor. This should not be a large overhead,
because a snoop response packet may already contain
several bits for an address, line snoop response, ECC bits,
and other information for routing / request matching.

A scaled back implementation can use only one addi-
tional bit (or encoding) to signal whether the region is
cached externally. Such a system would only need three
region protocol states: exclusive, not-exclusive, or invalid.

4. Evaluation Methodology

Detailed timing evaluation was performed with a multi-
processor simulator [25] built on top of SimOS-PPC [26].
The simulator implements the PowerPC ISA, and runs
both user-level and system code. We modeled a four-
processor system with a Fireplane-like interconnect and
1.5GHz processors with resources similar to the UltraS-
parc-IV [24]. Unlike the UltraSparc-IV, the processors
feature out-of-order issue, and an on-chip 2MB L2 cache
(1MB per processor). For evaluating Coarse-Grain Coher-
ence Tracking, we assume the RCA has the same

organization as the L2-cache tags, with 8K sets and 2-way
associative (16K entries). We evaluated region sizes of
256 Bytes, 512 Bytes, and 1 Kilobyte. A complete list of
parameters is in Table 3.

Table 3. Simulation Parameters.
System
Processors Cores Per Processor Chip 2
Processor Chips Per Data Switch 2
DMA Buffer Size 512-Byte
Processor
Processor Clock 1.5GHz
Processor Pipeline 15 stages
Fetch Queue Size 16 instructions
BTB 4K sets, 4-way
Branch Predictor 16K-entry Gshare
Return Address Stack 8 entries
Decode/Issue/Commit Width 4/4/4
Issue Window Size 32 entries
ROB 64 entries
Load/Store Queue Size 32 entries
Int-ALU/Int-MULT 2/1
FP-ALU/FP-MULT 1/1
Memory Ports 1
Caches
L1 I-Cache Size/Associativity/Block-Size/Latency 32KB 4-way, 64B lines, 1-cycle
L1 D-Cache Size/Associativity/Block-Size/Latency 64KB 4-way, 64B lines, 1-cycle (Writeback)
L2 Cache Size/Associativity/Block-Size/Latency 1MB 2-way, 64B lines, 12-cycle (Writeback)
Prefetching Power4-style, 8 streams, 5 line runahead

MIPS R10000-style exclusive-prefetching
Cache Coherence Protocols Write-Invalidate MOESI (L2), MSI (L1)
Memory Consistency Model Sequential Consistency
Interconnect
System Clock 150Mhz
Snoop Latency 106ns (16 cycles)
DRAM Latency 106ns (16 cycles)
DRAM Latency (Overlapped with Snoop) 47ns (7 cycles)
Critical Word Transfer Latency (Same Data Switch) 20ns (3 cycles)
Critical Word Transfer Latency (Same Board) 47ns (7 cycles)
Critical Word Transfer Latency (Remote) 80ns (12 cycles)
Data Network Bandwidth (per processor) 2.4GB/s (16B/cycle)
Coarse-Grain Coherence Tracking
Region Coherence Array 8192 sets, 2-way set-associative
Region Sizes 256B, 512B, and 1KB
Direct Request Latency (Same Memory Controller) 0.7ns (1 cycle)
Direct Request Latency (Same Data Switch) 13ns (2 system cycles)
Direct Request Latency (Same Board) 27ns (4 system cycles)
Direct Request Latency (Remote) 40ns (6 system cycles)

Figure 6 illustrates the timing of the critical word for dif-
ferent scenarios of an external memory request. The
baseline cases are taken from the Fireplane sys-
tems [1, 24]. For direct memory accesses employed by our
proposed system, we assume that a request can begin one
CPU cycle after the L2 access for memory co-located with
the CPU (memory controller is on-chip), after two system
cycles for memory connected to the same data switch, after
four system cycles for memory on the same board, and
after six system cycles for the memory on other boards.
The Fireplane system overlaps the DRAM access with the
snoop; so direct requests see a much longer DRAM la-
tency (9 system cycles).

Table 2. Storage overhead for varying array sizes and region sizes.

Address Tags (2) State (2) Line Count (2) Mem-Cntrl ID (2) LRU ECC Total Bits Tag Space Overhead Cache Space Overhead
4K-Entries, 256-Byte Regions 21 3 3 6 1 9 76 10.2% 1.6%
4K-Entries, 512-Byte Regions 20 3 4 6 1 9 76 10.2% 1.6%
4K-Entries, 1024-Byte Regions 19 3 5 6 1 9 76 10.2% 1.6%
8K-Entries, 256-Byte Regions 20 3 3 6 1 8 73 19.6% 3.0%
8K-Entries, 512-Byte Regions 19 3 4 6 1 8 73 19.6% 3.0%
8K-Entries, 1024-Byte Regions 18 3 5 6 1 8 73 19.6% 3.0%
16K-Entries, 256-Byte Regions 19 3 3 6 1 8 71 38.2% 5.9%
16K-Entries, 512-Byte Regions 18 3 4 6 1 8 71 38.2% 5.9%
16K-Entries, 1024-Byte Regions 17 3 5 6 1 8 71 38.2% 5.9%

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

As one can see, the request latency is shortest for requests
to the on-chip memory controller; otherwise the reduction
in overhead versus snooping is offset somewhat by the
latency of sending requests to the memory controller. This
makes the results conservative because the version of AIX
used in the simulations makes no effort at data placement
based on the non-uniformity of the memory system.

Snoop (16) DRAM (+7)

DRAM (16)

Data Transfer (2)

Request (2) Data Transfer (2)

Snoop (16) DRAM (+7)

DRAM (16)

Data Transfer (7)

Request (4) Data Transfer (7)

Snoop Same-Data Switch
Memory (25 cycles +
queuing delays)

Directly Access Same-Data
Switch Memory (20 cycles +
queuing delays)

Snoop Same-Board Memory
(30 cycles + queuing delays)

Directly Access Same-Board
Memory (27 cycles +
queuing delays)

Snoop (16) DRAM (+7)

DRAM (16)

Data Transfer (2)

Data Transfer (2)

Snoop Own Memory
(25 cycles + queuing delays)

Directly Access Own Memory
(~18 cycles + queuing delays)

Request (0.1)

Figure 6. Memory request latency.

For benchmarks, we use a combination of commercial
workloads, scientific benchmarks, and a multiprogrammed
workload (Table 4). Simulations were started from check-
points taken on an IBM RS/6000 server running AIX, and
include OS code. Cache checkpoints were included to
warm the caches prior to simulation. Due to workload
variability we averaged several runs of each benchmark
with small random delays added to memory requests to
perturb the system [27]. The 95% confidence intervals for
each workload are shown in the timing results that follow.

Table 4. Benchmarks for timing simulations.
Category Benchmark Comments

Scientific Ocean SPLASH-2 Ocean Simulation, 514 x 514 Grid

Raytrace SPLASH-2 Raytracing application, Car

Barnes SPLASH-2 Barnes-Hut N-body Simulation, 8K Particles

Multiprogramming SPECint2000Rate Standard Performance Evaluation Corporation's CPU
Integer Benchmarks, Combination of reduced-input runs

Web SPECweb99
Standard Performance Evaulation Corporation's World
Wide Web Server, Zeus Web Server 3.3.7, 300 HTTP
Requests

SPECjbb2000
Standard Performance Evaulation Corporation's Java
Business Benchmark, IBM jdk 1.1.8 with JIT, 20
Warehouses, 2400 Requests

TPC-W Transaction Processing Council's Web e-Commerce
Benchmark, DB Tier, Browsing Mix, 25 Web Transactions

OLTP TPC-B
Transaction Processing Council's Original OLTP
Benchmark, IBM DB2 version 6.1, 20 clients, 1000
transactions

Decision Support TPC-H
Transaction Processing Council's Decision Support
Benchmark, IBM DB2 version 6.1, Query 12 on a 512MB
Database

5. Results

5.1. Effectiveness at Avoiding Broadcasts

Figure 7 shows both the number of requests for which a
broadcast is unnecessary (from Figure 2) and the number
of requests that are sent directly to memory or avoided
altogether by Coarse-Grain Coherence Tracking.

Except for Barnes and TPC-H, all the applications ex-
perience a large reduction in the number of broadcasts.
Barnes experiences a 21-22% reduction, while TPC-H
experiences only a 9-12% reduction. However, even for
these cases, Coarse-Grain Coherence Tracking is capturing
a significant fraction of the total opportunity. TPC-H, for
example, benefits a great deal from Coarse-Grain Coher-
ence Tracking during the parallel phase of the query, but
later when merging information from the different proc-
esses there are a lot of cache-to-cache transfers, leaving a
best-case reduction of only 15% of broadcasts.

We include write-backs in Figure 7, but put them on top
of the stacks to clearly separate the contribution of the
other requests. Write-backs do not need to be broadcast,
strictly speaking, but they are typically broadcast to find
the appropriate memory controller and simplify ordering.
Because of the multitude of memory configurations result-
ing from different system configurations, DRAM sizes,
DRAM slot occupancies, and interleaving factors, it is
difficult for all the processors to track the mapping of
physical addresses to memory controllers [14]. And, in a
conventional broadcast system, there is little benefit in
adding address decoding hardware, network resources for
direct requests, and protocol complexity just to accelerate
write-backs. In contrast, a system that implements Coarse-
Grain Coherence Tracking already has the means to send
requests directly to memory controllers, and one can easily
incorporate an index for the memory controller into the
region state. Consequently, there is a significant improve-
ment in the number of broadcasts that can be avoided, but
this will only affect performance if the system is network-
bandwidth-constrained (not the case in our simulations).

5.2. Performance Improvement

Figure 8 shows the reduction in execution time for Coarse-
Grain Coherence, with error bars for the 95% confidence
intervals. The conversion of broadcasts to direct requests
reduces the average memory latency significantly, particu-
larly for 512B regions, leading to average performance
gains of 10.4% for the commercial workloads and 8.8%
for the entire benchmark set. The largest speedup is 21.7%
for TPC-W with 512B regions.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

0%

20%

40%

60%

80%

100%

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

O
ra

cl
e

25
6B

51
2B

1K
B

Ocean Raytrace Barnes SPECint
2000rate

SPECjbb
2000

SPECweb
99

TPC-H TPC-B TPC-W Arithmetic
Mean

R
eq

ue
st

s

DCB I-Fetch Read Write Write-back

Figure 7. Effectiveness of Coarse-Grain Coherence Tracking for avoiding unnecessary broadcasts and
eliminating unnecessary external requests in a four-processor system. The leftmost bar for each
benchmark shows the requests for which broadcasts are unnecessary (from Figure 2), and the adjacent
bars show the percentage avoided for each region size.

One important design issue is how large the RCA should
be. In this study, we found that the average number of
lines cached per region ranges from 2.8 to 5. Therefore,
one should be able to use half as many sets in the RCA as
in the cache and still maintain good performance. Figure 9
shows the runtime for the baseline, 512B regions, and
512B regions with half the number of sets as the cache
tags. With half the number of entries (8K) the average

performance improvement is 9.1% for the commercial
workloads, and 7.8% for all benchmarks. This is only a
small decrease in performance for a halved (3% total)
cache storage overhead. It is a tradeoff between perform-
ance and space overhead that will depend on the
complexity and actual physical space overhead of the
implementation.

75%

80%

85%

90%

95%

100%

105%

Oce
an

Ray
tra

ce

Barn
es

SPECint
20

00
rat

e

SPECjbb
20

00

SPECweb
99

TPC-H

TPC-B

TPC-W

Arith
meti

c M
ea

n

Baseline 256B Regions 512B Regions 1KB Regions

91.2%

93% 92.1%

Figure 8. Impact on run time for different region sizes. For these workloads 512B appears to be the best
region size, with an average 8.8% reduction in run time.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

75%

80%

85%

90%

95%

100%

105%

Oce
an

Ray
tra

ce

Bar
ne

s

SPECint
20

00
rat

e

SPECjbb
20

00

SPECweb
99

TPC-H
TPC-B

TPC-W

Arith
meti

c M
ea

n

Baseline 512B Regions 512B Regions, half number of sets

91.2%

92.2%

Figure 9. Impact on run time with a region coherence array with half the number of sets as the cache.
There is only a 1% difference in the average run time reduction for these workloads.

5.3. Scalability Improvement

By reducing the number of broadcasts, scalability is also
improved. In Figure 10, the number of broadcasts per-
formed during the entire run of each application is divided
by the number of cycles for both the baseline, and the
design with 512B regions, and shown as the average num-
ber of broadcasts per 100,000 cycles. Figure 10 also shows
the same ratio for the peak traffic, where the peak is the

largest number of broadcasts observed for any 100,000
cycle interval. Both the average and peak bandwidth re-
quirements of the system have been reduced to less than
half that of the baseline. Coincidentally, the benchmarks
used here that have the highest bandwidth requirements are
also those that most significantly benefit from Coarse-
Grain Coherence Tracking. And, the rate of broadcasts is
lower for each benchmark despite the execution time also
being shorter.

0

1500

3000

4500

6000

7500

Oce
an

Ray
tra

ce

Barn
es

SPECint
20

00
rat

e

SPECjbb
20

00

SPECweb
99

TPC-H
TPC-B

TPC-W

B
ro

ad
ca

st
s

/ 1
00

K
 C

yc
le

s

Average Baseline Average w/ 512B Regions Peak Baseline Peak w/ 512B Regions

2573

1103

7365

2683

Figure 10: Average and peak broadcast traffic for the baseline and 512B regions. The highest average
traffic for the set has gone down from nearly 2,573 broadcasts per 100K cycles for the baseline to 1,103.
The peak traffic for any 100K interval in any benchmark has been reduced from 7,365 to 2,683.

6. Conclusions and Future Work

Coarse-Grain Coherence Tracking can significantly reduce
average request latency and bandwidth in a broadcast-
based multiprocessor system, and hence improve the per-
formance of these systems. Coarse-Grain Coherence does

not increase request latency, and the additional cache line
evictions needed for maintaining inclusion are negligible.
Finally, the implementation impact is manageable. In the
hypothetical system we evaluated, it is only necessary to
add two bits to the snoop response, and an array for the
region state that adds 5.9% to the storage requirements of

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

the L2 cache. Furthermore, most of the benefit can be
achieved with an array nearly half that size.

We used the region state only to summarize the local
and remote coherence state of lines in the region. How-
ever, regions may also maintain other information.
Knowledge of whether data is likely to be cached in the
system can be used to avoid unnecessary DRAM accesses
in systems that start the DRAM access in parallel with the
snoop. The region state can also indicate where cached
copies of data may exist, creating opportunities for im-
proved cache-to-cache transfers and invalidations.

An important avenue of future research is in the power-
saving potential of Coarse-Grain Coherence. In this paper
we only measured performance improvements; however,
by reducing network activity [17], tag array look-
ups [15, 18], and DRAM accesses power can be saved.
However, the additional logic may cancel out some of that
savings.

Finally, there is potential for extending Coarse-Grain
Coherence Tracking with prefetching techniques. Though
our system already uses two standard types of prefetching
(i.e., MIPS R10000-style exclusive-prefetching [28] and
IBM Power4-style stream prefetching [2]), there are new
opportunities. The region coherence state can indicate
when lines may be externally dirty and hence may not be
good candidates for prefetching. The region state can help
identify lines that are good candidates for prefetching by
indicating when a region of memory is not shared and a
prefetch can go directly to memory. Furthermore, prefetch-
ing techniques can aid Coarse-Grain Coherence Tracking
by prefetching the global region state, going after the 4%
of requests for which a broadcast is unnecessary, but the
region state was Invalid.

7. Acknowledgements

We thank Harold Cain, Brian Fields, Mark Hill, Andrew
Huang, Ibrahim Hur, Candy Jelak, Steven Kunkel, Kevin
Lepak, Martin Licht, Don McCauley, and William Starke,
for comments on drafts of this paper. We would also like
to thank our many anonymous reviewers for their many
comments. This research was supported by NSF grant
CCR-0083126, and fellowships from the NSF and IBM.

References

[1] Charlesworth, A. The Sun Fireplane System Interconnect.

Proceedings of SC2001.
[2] Tendler, J., Dodson, S., and Fields, S. IBM eServer

Power4 System Microarchitecture, Technical White Pa-
per, IBM Server Group, 2001

[3] Kalla, R., Sinharoy, B., and Tendler, J. IBM Power5 Chip:
A Dual-Core Multithreaded Processor IEEE Micro, 2004.

[4] Weber, F., Opteron and AMD64, A Commodity 64 bit x86
SOC. Presentation. Advanced Micro Devices, 2003.

[5] Sweazy, P., and Smith A., A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE Fu-
turebus. Proceedings of the 13th Annual International
Symposium on Computer Architecture (ISCA), 1986.

[6] Liptay, S., Structural Aspects of the System/360 Model 85,
Part II: The Cache. IBM Systems Journal, Vol. 7, pp 15-
21, 1968.

[7] Hill, M., Smith, A., Experimental Evaluation of On-Chip
Microprocessor Cache Memories. Proceedings of the 15th
International Symposium on Computer Architecture, 1984.

[8] Rothman, J., and Smith, A., The Pool of Subsectors Cache
Design. Proceedings of the 13th International Conference
on Supercomputing (ICS), 1999.

[9] Seznec, A., Decoupled Sectored Caches: conciliating low
tag implementation cost and low miss ratio. Proceedings
of the 21st Annual International Symposium on Computer
Architecture (ISCA), 1994.

[10] Kadiyala, M., and Bhuyan, L. A Dynamic Cache Sub-
block Design to Reduce False Sharing. International Con-
ference on Computer Design, VLSI in Computers and
Processors, 1995.

[11] Anderson, C., and Baer, J-L. Design and Evaluation of a
Subblock Cache Coherence Protocol for Bus-Based Mul-
tiprocessors. Technical Report UW CSE TR 94-05-02,
University of Washington, 1994.

[12] Dubnicki, C., and LeBlanc, T. Adjustable Block Size
Coherent Caches. Proceedings of the 19th Annual Interna-
tional Symposium on Computer Architecture (ISCA),
1992.

[13] May, C., Silha, E., Simpson, R., and Warren, H. (Eds).
The PowerPC Architecture: A Specification for a New
Family of RISC Processors (2nd Edition). Morgan Kauf-
mann Publishers, Inc.,1994.

[14] Steven R. Kunkel, Personal Communication, March 2004.
[15] Moshovos, A., Memik, G., Falsafi, B., and Choudhary, A.

JETTY: Filtering Snoops for Reduced Energy Consump-
tion in SMP Servers. Proceedings of 7th International
Symposium on High-Performance Computer Architecture
(HPCA), 2001.

[16] Moshovos, A., RegionScout: Exploiting Coarse Grain
Sharing in Snoop-Based Coherence. Proceedings of the
32nd Annual International Symposium on Computer Archi-
tecture (ISCA). 2005.

[17] Saldanha, C., and Lipasti, M. Power Efficient Cache
Coherence. Workshop on Memory Performance Issues, in
conjunction with the International Symposium on Com-
puter Architecture (ISCA), 2001.

[18] Ekman, M., Dahlgren, F., and Stenström, P. TLB and
Snoop Energy-Reduction using Virtual Caches in Low-
Power Chip-Multiprocessors. Proceedings of ISLPED,
2002.

[19] Reynolds, P., Williams, C., and Wagner, R., Isotach Net-
works. IEEE Transactions on Parallel and Distributed
Systems. Vol. 8, No. 4, 1997.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

[20] Martin, M., Sorin, D., Ailamaki, A., Alameldeen A.,
Dickson, R., Mauer C., Moore K., Plakal M., Hill, M., and
Wood, D. Timestamp Snooping: An Approach for Extend-
ing SMPs. Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2000.

[21] Martin, M, Hill, M, Wood, D. Token Coherence: Decoup-
ling Performance and Correctness. Proceedings of the 30th
Annual International Symposium on Computer Architec-
ture (ISCA), 2003.

[22] Martin, M., Harper, P., Sorin, D., Hill, M., and Wood, D.,
Using Destination-Set Prediction to Improve the La-
tency/Bandwidth Tradeoff in Shared-Memory
Multiprocessors. Proceedings of the 30th International
Symposium on Computer Architecture, 2003.

[23] Lebeck, A., and Wood, D. Dynamic Self-Invalidation:
Reducing Coherence Overhead in Shared-Memory Multi-
processors. Proceedings of the 22nd Annual International
Symposium on Computer Architecture (ISCA), 1995.

[24] UltraSPARC IV Processor, User�s Manual Supplement,
Sun Microsystems Inc, 2004.

[25] Cain, H., Lepak, K., Schwartz, B., and Lipasti, M. Precise
and Accurate Processor Simulation. Proceedings of the 5th
Workshop on Computer Architecture Evaluation Using
Commercial Workloads, pp. 13-22, 2002.

[26] Keller, T., Maynard, A., Simpson, R., and Bohrer, P.
Simos-ppc Full System Simulator.
http://www.cs.utexas.edu/users/cart/simOS.

[27] Alameldeen, A., Martin, M., Mauer, C., Moore, K., Xu,
M., Hill, M., and Wood, D. Simulating a $2M Commer-
cial Server on a $2K PC. IEEE Computer, 2003.

[28] Gharachorloo, K., Gupta, A., and Hennessy, J. Two Tech-
niques to Enhance the Performance of Memory
Consistency Models. Proceedings of the International Con-
ference on Parallel Processing (ICPP), 1991.

0-7695-2270-X/05/$20.00 (C) 2005 IEEE

	Select a link below
	Return to Main Menu
	Return to Previous View

